Задание. Найти проекцию вектора $\bar{a}$ на вектор $\bar{b}$, если $\bar{a}=(-1 ; 0)$ и $\bar{b}=(3 ;-4)$
Решение. Для нахождения проекции вектора $\bar{a}$ на вектор $\bar{b}$, будем использовать формулу
$$Пр_{\bar{b}} \bar{a}=\frac{(\bar{a}, \bar{b})}{|\bar{b}|}=\frac{a_{x} \cdot b_{x}+a_{y} \cdot b_{y}}{\sqrt{b_{x}^{2}+b_{y}^{2}}}$$Подставляя в неё координаты заданных векторов, получим:
$$Пр_{\bar{b}} \bar{a}=\frac{(\bar{a}, \bar{b})}{|\bar{b}|}=\frac{-1 \cdot 3+0 \cdot(-4)}{\sqrt{3^{2}+(-4)^{2}}}=\frac{-3+0}{\sqrt{9+16}}=\frac{-3}{\sqrt{25}}=-\frac{3}{5}$$Ответ. $Пр_{\bar{b}} \bar{a}=-\frac{3}{5}$