Последовательность $\left\{x_{n}\right\}$ называется сходящейся, если существует такое число $a \in R$ такое, что последовательность $\left\{x_{n}-a\right\}$ является бесконечно малой последовательностью.
Содержание:
Определение
Определение
Число $a$ называется пределом последовательности $\left\{x_{n}\right\}$ и обозначается $\lim _{n \rightarrow \infty} x_{n}=\lim _{n} x_{n}=a$, $x_{n} \underset{n \rightarrow \infty}{\longrightarrow} a$
Число $a$ называется пределом последовательности $\left\{x_{n}\right\}$ , если для любого $\epsilon>0$ существует номер $n_{0}=n_{0}(\epsilon)$ такой, что для любого $n>n_{0}$ выполняется неравенство $\left|x_{n}-a\right| \lt \epsilon$ :
$\lim _{n \rightarrow \infty} x_{n}=a \Leftrightarrow \forall \epsilon>0, \exists n_{0}=n_{0}(\epsilon) : \forall n>n_{0},\left|x_{n}-a\right| \lt \epsilon$
Определение
Целой частью $[x]$ некоторого числа $x$ называется наибольшее целое число, не превосходящее $x$
Пример
Задание. Найти целую часть чисел - 2,36; 2,36; 2.
Решение. $[-2,36]=-3,[2,36]=2,[2]=2$
Пример
Задание. Доказать равенство: $\lim _{n \rightarrow \infty} \frac{1}{n}=0$
Доказательство. Исходя из определения, 0 будет пределом последовательности $\frac{1}{n}$ , если для любого $\epsilon>0$ найдется такой номер $n_{0}=n_{0}(\epsilon)$, что для любого $n>n_{0}$ выполняется неравенство $\left|x_{n}-0\right| \lt \epsilon$:
$\left|x_{n}-a\right|=\left|\frac{1}{n}-0\right|=\left|\frac{1}{n}\right|=\frac{|1|}{|n|}=\frac{1}{n} \lt \epsilon \Rightarrow n>\frac{1}{\epsilon}$
В качестве $n_{0}$ возьмем $n_{0}=\left[\frac{1}{\epsilon}\right]+1$
Итак, для любого $n>n_{0}$ указано соответствующее значение $n_{0}$ , а тогда равенство $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ доказано.
Сходящиеся и расходящиеся последовательности
Определение
Последовательность, которая имеет предел, называется сходящейся; иначе - расходящейся.
Пример
Задание. Доказать, что последовательность $x_{n}=(-1)^{n+1}$ не имеет предел.
Доказательство. Пусть $a$ - предел рассматриваемой последовательности, то есть $\lim _{n \rightarrow \infty} x_{n}=a$. Рассмотрим $\epsilon=\frac{1}{10} \Rightarrow \exists n_{0}=n_{0}(\epsilon) \in N : n>n_{0} :\left|x_{n}-a\right| \lt \epsilon$
Пусть $n=2 k$ :
$\left|x_{2 k}-a\right| \lt \frac{1}{10} \Rightarrow|-1-a| \lt \frac{1}{10} \Rightarrow|1+a| \lt \frac{1}{10}$
Пусть $n=2 k+1$ :
$\left|x_{2 k+1}-a\right| \lt \frac{1}{10} \Rightarrow|1-a| \lt \frac{1}{10}$
Так как полученные выражения не равны, то данная последовательность предела не имеет.
Постоянная последовательность $\left\{x_{n}\right\}=\{c\}$ имеет предел, равный числу $c$ : $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} c=c$
Теорема
Сходящаяся последовательность имеет только один предел.
Теорема
(Необходимый признак сходимости последовательности).
Сходящаяся последовательность ограничена.
Последовательность на бесконечности
Последовательность $\left\{x_{n}\right\}$ имеет бесконечный предел, если для любого $\epsilon>0, \exists n_{0} \in N : n>n_{0} :$ $x_{n}>\epsilon : \lim _{n \rightarrow \infty} x_{n}=\infty$
Последовательность $\left\{x_{n}\right\}$ называется бесконечно малой, если $\lim _{n \rightarrow \infty} x_{n}=0$
Последовательность $\left\{x_{n}\right\}$ называется бесконечно большой, если для любого $\epsilon>0$ существует номер $n_{0}$ такое, что для любого $n>n_{0} :\left|x_{n}\right|>\epsilon$
Теорема
Пусть $\lim _{n \rightarrow \infty} x_{n}=a, \lim _{n \rightarrow \infty} y_{n}=b$ , тогда
а) $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty} x_{n}+\lim _{n \rightarrow \infty} y_{n}=a+b$ ;
б) $\lim _{n \rightarrow \infty}\left(x_{n} \cdot y_{n}\right)=\lim _{n \rightarrow \infty} x_{n} \cdot \lim _{n \rightarrow \infty} y_{n}=a \cdot b$ ;
в) если $b \neq 0$ , то начиная с некоторого номера заданная последовательность $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\frac{a}{b}$
Читать дальше: предельный переход в неравенствах.