Последовательность $\left\{x_{n}\right\}$ называется ограниченной сверху, если существует такое число , что для любого номера $n$ , $x_{n} \leq M$
Последовательность $\left\{x_{n}\right\}$ называется ограниченной снизу, если существует такое число $m \in R$ , что для любого номера $n$ , $x_{n} \geq m$
Последовательность $\left\{x_{n}\right\}$ называется ограниченной , если она ограниченная сверху и ограниченная снизу, то есть существует такое число $M \geq 0$ , что для любого номера $n$ , $\left|x_{n}\right| \leq M$
Последовательность $\left\{x_{n}\right\}$ называется неограниченной, если существует такое число $M \geq 0$ , что существует такой номер $n$ , что $\left|x_{n}\right| \geq M$