Содержание:

Замечание

С помощью данного метода можно находить решение только для квадратных СЛАУ.

Матричный метод решения

Запишем заданную систему в матричном виде:

$$AX=B$$

Если матрица $$A$$ невырождена, то тогда с помощью операций над матрицами выразим неизвестную матрицу $$X$$ . Операция деления на множестве матриц заменена умножением на обратную матрицу, поэтому домножим последнее равенство на матрицу $A^{-1}$ слева:

$$A^{-1} A X=A^{-1} B \Rightarrow E X=A^{-1} B \Rightarrow$$ $$X=A^{-1} B$$

Поэтому, чтобы найти неизвестную матрицу $$X$$ надо найти обратную матрицу к матрице системы и умножить ее справа на вектор-столбец свободных коэффициентов.

Замечание

Данный метод удобно применять тогда, когда нужно решить много одинаковых систем с разными правыми частями.

Примеры решения систем уравнений

Пример

Задание. Найти решение СЛАУ $\left\{\begin{array}{l} 5 x_{1}+2 x_{2}=7 \\ 2 x_{1}+x_{2}=9 \end{array}\right.$ матричным методом.

Решение. Выпишем матрицу системы $A=\left(\begin{array}{ll} 5 & 2 \\ 2 & 1 \end{array}\right)$ и матрицу правых частей $B=\left(\begin{array}{l} 7 \\ 9 \end{array}\right)$ . Найдем обратную матрицу для матрицы системы. Для матрицы второго порядка обратную можно находить по следующему алгоритму: 1) матрица должна быть невырождена, то есть ее определитель не должен равняться нулю: $|A|=1$; 2) элементы, стоящие на главной диагонали меняем местами, а у элементов побочной диагонали меняем знак на противоположный и делим полученные элементы на определитель матрицы. Итак, получаем, что

$$A^{-1}=\left(\begin{array}{rr} 1 & -2 \\ -2 & 5 \end{array}\right)$$

Тогда

$$X=\left(\begin{array}{c} x_{1} \\ x_{2} \end{array}\right)=A^{-1} B=\left(\begin{array}{rr} 1 & -2 \\ -2 & 5 \end{array}\right) \cdot\left(\begin{array}{l} 7 \\ 9 \end{array}\right)=$$ $$=\left(\begin{array}{r} -11 \\ 31 \end{array}\right) \Rightarrow\left(\begin{array}{r} x_{1} \\ x_{2} \end{array}\right)=\left(\begin{array}{r} -11 \\ 31 \end{array}\right)$$

Две матрицы одного размера равны, если равны их соответствующие элементы, то есть в итоге имеем, что $x_{1}=-11, x_{2}=31$

Ответ. $x_{1}=-11, x_{2}=31$


Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 447 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Решить с помощью обратной матрицы систему $\left\{\begin{array}{l} 2 x_{1}+x_{2}+x_{3}=2 \\ x_{1}-x_{2}=-2 \\ 3 x_{1}-x_{2}+2 x_{3}=2 \end{array}\right.$

Решение. Запишем данную систему в матричной форме:

$AX=B$

где $A=\left(\begin{array}{rrr} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 3 & -1 & 2 \end{array}\right)$ - матрица системы, $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ - столбец неизвестных, $X=\left(\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right)$ - столбец правых частей. Тогда $X=A^{-1} B$

Найдем обратную матрицу $X=A^{-1}$ к матрице $A$ с помощью союзной матрицы:

$$A^{-1}=\frac{1}{\Delta} \cdot \widetilde{A}^{T}$$

Здесь $\Delta=|A|$ - \lt a href="formules_6_11.php" title="Методы вычисления определителей матрицы: теоремы и примеры нахождения">определитель матрицы $A$ ; матрица $\tilde{A}$ - союзная матрица, она получена из исходной матрицы $A$ заменой ее элементов их алгебраическими дополнениями. Найдем $A$ , для этого вычислим алгебраические дополнения к элементам матрицы $A$ :

$$A_{11}=(-1)^{1+1}\left|\begin{array}{rr} -1 & 0 \\ -1 & 2 \end{array}\right|=-2$$    $A_{12}=(-1)^{1+2}\left|\begin{array}{cc} 1 & 0 \\ 3 & 2 \end{array}\right|=-2$

$A_{13}=(-1)^{1+3}\left|\begin{array}{cc} 1 & -1 \\ 3 & -1 \end{array}\right|=2$    $A_{21}=(-1)^{2+1}\left|\begin{array}{rr} 1 & 1 \\ -1 & 2 \end{array}\right|=-3$

$A_{22}=(-1)^{2+2}\left|\begin{array}{cc} 2 & 1 \\ 3 & 2 \end{array}\right|=1$    $A_{23}=(-1)^{2+3}\left|\begin{array}{rr} 2 & 1 \\ 3 & -1 \end{array}\right|=5$

$A_{31}=(-1)^{3+1}\left|\begin{array}{rr} 1 & 1 \\ -1 & 0 \end{array}\right|=1$    $A_{32}=(-1)^{3+2}\left|\begin{array}{ll} 2 & 1 \\ 1 & 0 \end{array}\right|=1$

$$A_{33}=(-1)^{3+3}\left|\begin{array}{rr} 2 & 1 \\ 1 & -1 \end{array}\right|=-3$$

Таким образом,

$$\tilde{A}=\left(\begin{array}{rrr} -2 & -2 & 2 \\ -3 & 1 & 5 \\ 1 & 1 & -3 \end{array}\right)$$

Определитель матрицы $A$

$$\Delta=\left|\begin{array}{rrr} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 3 & -1 & 2 \end{array}\right|=2 \cdot(-1) \cdot 2+1 \cdot(-1) \cdot 1+1 \cdot 0 \cdot 3-$$ $$-3 \cdot(-1) \cdot 1-(-1) \cdot 0 \cdot 2-1 \cdot 1 \cdot 2=-4 \neq 0$$

А тогда

$$\tilde{A}=-\frac{1}{4}\left(\begin{array}{rrr} -2 & -3 & 1 \\ -2 & 1 & 1 \\ 2 & 5 & -3 \end{array}\right)$$

Отсюда искомая матрица

$$X=\left(\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right)=-\frac{1}{4}\left(\begin{array}{rrr} -2 & -3 & 1 \\ -2 & 1 & 1 \\ 2 & 5 & -3 \end{array}\right)\left(\begin{array}{r} 2 \\ -2 \\ 2 \end{array}\right)=$$ $$=\left(\begin{array}{r} -1 \\ 1 \\ 3 \end{array}\right) \Rightarrow\left\{\begin{array}{l} x_{1}=-1 \\ x_{2}=1 \\ x_{3}=3 \end{array}\right.$$ $$\left\{\begin{array}{l} x_{1}=-1 \\ x_{2}=1 \\ x_{3}=3 \end{array}\right.$$

Читать дальше: метод Крамера.