Теорема Кронекера-Капелли. СЛАУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.
Теорема
Пример
Задание. При каких значениях $\lambda$ система $\left\{\begin{array}{l} 2 x_{1}-x_{2}+x_{3}+x_{4}=1 \\ x_{1}+2 x_{2}-x_{3}+x_{4}=2 \\ x_{1}+7 x_{2}-4 x_{3}+2 x_{4}=\lambda \end{array}\right.$ будет совместной?
Решение. Ранг матрицы равен количеству ненулевых строк после приведения этой матрицы к ступенчатому виду. Поэтому записываем расширенную матрицу системы $\tilde{A}$ (слева от вертикальной черты находится матрица системы $A$ ):
$$\tilde{A}=\left(\begin{array}{rrrr|r} 2 & -1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 1 & 2 \\ 1 & 7 & -4 & 2 & \lambda \end{array}\right)$$и с помощью элементарных преобразований приводим ее к ступенчатому виду. Для этого вначале от первой строки отнимаем две вторых строки, а от третьей вторую, в результате получаем:
$$\tilde{A} \sim\left(\begin{array}{rrrr|r} 0 & -5 & 3 & -1 & -3 \\ 1 & 2 & -1 & 1 & 2 \\ 0 & 5 & -3 & 1 & \lambda-2 \end{array}\right)_{+I} \sim$$Третью строку складываем с первой:
$$\tilde{A} \sim\left(\begin{array}{rrrr|r} 0 & -5 & 3 & -1 & -3 \\ 1 & 2 & -1 & 1 & 2 \\ 0 & 0 & 0 & 0 & \lambda-5 \end{array}\right)$$и меняем первую и вторую строки матрицы местами
$$\tilde{A} \sim\left(\begin{array}{rrrr|r} 1 & 2 & -1 & 1 & 2 \\ 0 & -5 & 3 & -1 & -3 \\ 0 & 0 & 0 & 0 & \lambda-5 \end{array}\right)$$Матрица приведена к ступенчатому виду. Получаем, что $\operatorname{rang} A=2$, $\text {rang} \tilde{A}=\left\{\begin{array}{l} 2, \lambda=5 \\ 3, \lambda \neq 5 \end{array}\right.$. Таким образом, при $\lambda=5$ система совместна, а при при $\lambda \neq 5$ - несовместна.
Читать дальше: квадратные СЛАУ. Матричный метод решения.