Формула силы Архимеда в физике
Формула силы Архимеда
Определение и формула силы Архимеда
Эмпирически еще в древней Греции было получено, что тело, погруженное в жидкость, весит меньше, чем находящееся в воздухе. На тело в жидкости со всех сторон она оказывает давление. Силы давления направлены перпендикулярно поверхности тела в каждой его точке. В том случае, если все силы, действующие на тело, были бы равны по модулю, то это тело испытывало только всестороннее сжатие. Мы знаем, что при увеличении глубины гидростатическое давление увеличивается, следовательно, силы давления, которые приложены к нижним частям тела больше, чем силы, которые действуют на тело вверху.
Если заменить все силы давления, которые приложены к телу, находящемуся в жидкости, одной результирующей силой, то эта сила будет направлена вверх. В этой связи ее назвали выталкивающей силой. По-другому ее называют силой Архимеда (${\overline{F}}_A$). Именно Архимед отметил факт ее существования и определил, как ее вычислить.
Сила Архимеда оказывает свое действие на тела не только в жидкостях, но и газах, там, где существует гиростатическое давление.
Величина силы Архимеда
Сила Архимеда, оказывающая действие на тело, погруженное в жидкость (или газ), равна весу жидкости (или газа), в объеме вытесненной (вытесненным) этим телом.
Рассмотрим тело в виде прямоугольного параллелепипеда полностью находящееся в жидкости рис.1. Предположим, что верхнее и нижнее основания располагаются параллельно горизонту.
Силы давления, действующие на боковые грани параллелепипеда, попарно уравновешены (например, ${\overline{F}}_{12}$=$-{\overline{F}}_{21}$). Они только сжимают параллелепипед. Силы, которые действуют на верхнюю и нижнюю грани параллелепипеда не равны между собой. Сила ($F_1$), действия столба жидкости на верхнюю грань, будет равна:
\[F_1=p_1S=(\rho gh_1+p_0)S\ \left(1\right),\]
где $\rho $ - плотность жидкости; $S$ - площадь основания; $h_1$ - высота столба жидкости над верхним основанием параллелепипеда.$\ p_0-$ давление атмосферы на поверхность жидкости.
Сила давления жидкости на нижнее основание параллелепипеда:
\[F_2=p_2S=(\rho gh_2+p_0)S\ \left(2\right),\]
где $h_2$ - высота столба жидкости над нижним основанием. Так как $h_2>h_1$, значит $F_2>F_1$. Модуль результирующей силы, действующей на тело со стороны жидкости:
\[F_A=F_2-F_1=\rho g{S(h}_2-h_1)\ (3).\ \]
Если обозначить высоту параллелепипеда как $h=h_2-h_1$, получим:
\[F_A=\rho gSh=\rho gV\ \left(4\right),\]
где $V$ - объем параллелепипеда. При нахождении тела в жидкости (газе) частично, то под V понимают объем погруженный в вещество (жидкость, газ). Правую часть выражения (4) еще называют весом жидкости, которую вытесняет тело, погруженное в нее.
На тело, находящееся в жидкости или газе, действует сила Архимеда, величина которой равна весу вещества (жидкости или газа) в объеме погруженной части тела. Сила Архимеда направлена вертикально вверх.
Закон Архимеда (4) выполняется для тел любой формы.
Сила Архимеда дает возможность плавать разного рода кораблям, несмотря на то, что плотность материала, из которого изготовлен корпус транспортного средства в несколько раз больше, чем плотность воды. Необходимо только чтобы вес воды, которую вытесняет подводная часть судна, был равен силе тяжести, которая действует на судно. Средняя же плотность корабля меньше плотности воды.
Сила Архимеда действует на тела находящиеся в воздухе. Но так как плотность воздуха мала, действием этой силы часто пренебрегают. В состоянии невесомости сила Архимеда равна нулю. В состоянии невесомости нет гидростатического давления.
Следует учесть, рассуждая о действии силы Архимеда, мы имеем в виду, что тело окружено жидкостью (газом), может быть за исключением своей верхней части. Если тело примыкаем ко дну сосуда или его стенке, то равнодействующая сил гидростатического давления станет прижимать тело ко дну или стенке. В этой связи, например, присасываются ко дну якоря кораблей, и если якорь лежит на большой глубине, то его крайне сложно оторвать от дна.
Примеры задач с решением
Пример 1
Задание. Металлический предмет, имеющий объем $V=10\ {см}^3$ упал в речку. Какова сила выталкивания, действующая на него?
Решение. На тело в воде будет действовать сила Архимеда (она же сила выталкивания), равная:
\[F_A=\rho gV\ \left(1.1\right),\]
где $\rho =1000\ \frac{кг}{м^3}-\ $плотность пресной воды при нормальных условиях; $V=10\ {см}^3={10}^{-5}м^3$; $g=9,8\ \frac{м}{с^2}$ - ускорение свободного падения. Вычислим силу выталкивания:
\[F_A=1000\cdot 9,8\cdot {10}^{-5}=9,8\cdot {10}^{-2}\left(Н\right).\]
Ответ. $F_A=9,8\cdot {10}^{-2}$Н
Пример 2
Задание. Чему равна сила натяжения каната (N), при помощи которого из пресного водоема равномерно двигая, поднимают тело плотностью $\rho $ и объемом V? Плотность воды считайте известной (${\rho }_g$). Движение рассмотрите в жидкости.
Решение. Рассмотрим силы, действующие на тело, поднимаемое из воды (рис.2).
В соответствии со вторым законом Ньютона равнодействующая всех сил, приложенных к телу равна нулю, так как тело поднимают равномерно:
\[\overline{N}+m\overline{g}+{\overline{F}}_A=0\ \left(2.1\right).\]
В проекции на ось Y инерциальной системы отсчета, которую мы связали с Землей, уравнение (2.1) даст нам следующее скалярное выражение:
\[N-mg+F_A=0\ \left(2.2\right).\]
Масса поднимаемого тела может быть найдена как:
\[m=\rho V\ \left(2.3\right).\]
Силу Архимеда определим как:
\[F_A={\rho }_gVg\ \left(2.4\right).\]
Подставим правые части выражений (2.3) и (2.4) в формулу (2.2) вместо соответствующих величин, выразим силу натяжения каната:
\[N=\rho Vg-{\rho }_gVg=\left(\rho -{\rho }_g\right)Vg.\]
Ответ. $N=\left(\rho -{\rho }_g\right)Vg$
Читать дальше: формула скорости волны.
Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in
/var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line
20
Мы помогли уже 4 470 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!