Содержание:

Предположим случай, когда из генеральной совокупности извлекается некоторая выборка, при этом каждому значению соответствует некоторый параметр, означающий количество раз, когда появлялось данное значение. Здесь $x_1$ было зафиксировано $n_1$ раз, $x_2$ было обнаружено $n_2$$x_k$ выявлено $n_k$. При этом

$\sum_{i=1}^{k}n_i=n$

Где n — объём рассматриваемой выборки.

Определение 1

Используется следующая терминология: $x_k$ носят наименование вариантов, а последовательность таких вариантов, зафиксированный по возрастанию именуется вариационным рядом. Количество наблюдений каждого из вариантов носят название частот. При этом частное частот и выборки называют относительными частотами.

Определение 2

Статистическое распределение —это название всего набора вариантов и частот, которые с ними соотносятся. Чаще всего задаётся с помощью специальной таблицы, где представлены частоты, а также интервалы им соответствующие.

$x_1$ $x_2$ $x_k$
$n_1$ $n_2$ $n_k$
$\frac{n_1}{n}$ $\frac{n_2}{n}$ $\frac{n_k}{n}$

Здесь в первой строке представлены варианты, во второй частоты, в третьеq взяты относительные частоты.

Для определения размера интервала используется следующее выражение:

$d=\frac{x_{max}- x_{min}}{1+3,332\cdot lg n}$

Здесь $x_{max}$, $x_{min}$ наибольшее и наименьшее значения ряда вариантов, а n характеризуем объём выборки.

Примеры использования формул и таблиц для решения практических задач

Пример 1

В ходе проведения измерений в однородных группах, были определены следующие значения выборки: 71, 72, 74, 70, 70, 72, 71, 74, 71, 72, 71, 73, 72, 72, 72, 74, 72, 73, 72, 74. Необходимо использовать данные значения, что определить ряд распределения частот и ряд распределения относительных частот.

Решение.

1) Составим статистический ряд распределения частот:

xi 70 71 72 73 74
ni 2 4 8 2 4

2) Рассчитаем суммарный размер выборки: n=2+4+8+2+4=20. Определим относительные частоты, для этого используем формулы: ni/n=wi: wi=2/20=0.1; w2=4/20=0.2; w3=0.4; w4=4/20=0.1; w5=2/20=0.2. Теперь зафиксируем в таблице распределение относительных частот:

xi 70 71 72 73 74
wi 0.1 0.2 0.4 0.1 0.2

Контрольная сумма должна равняться единице: 0,1+0,2+0,4+0,1+0,2=1.

Полигон частот

Название «полигоном частот» применяют для обозначения ломаной линии, каждый отрезок, которой соединяют точки $(х_1,n_1),(х_2,n_2),...,(х_k,n_k)$. Для построения на графике полигона частот по оси абсцисс отмечают варианты $х_2$, при этом на оси ординат отсчитывают– соответствующие частоты $n_i$. Когда полученные точки $(х_i,n_i)$ соединяются с помощью отрезков, то автоматически получают полигон частот.

Статистический интервальный ряд распределения.

Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются, если число различающихся вариант в полученной выборке не слишком большое. Также применение возможно, когда дискретность имеет важное значение для экспериментатора. В тех случаях, когда важный для задачи признак генеральной совокупности Х распределяется непрерывным образом, либо его дискретность нет возможности учесть, то варианты предпочтительнее всего группировать, чтобы получить интервалы.

Статистическое распределение допустимо задавать в том числе в качестве последовательности интервалов и частот, соответствующих этим интервалам. При это за частоту какого-либо интервала принимается сумма всех частот, вошедших в данный интервал.

Особенно следует отметить ,что $h_i-h_{i-1}=h$ при всех i, т.е. группировка проводится с равным шагом h. Также в вопросе группировки можно ориентироваться на ряд полученных опытным путём рекомендацийу, касающихся таких параметров, как а, k и $h_i$:

1. $Rраз_{мах}=X_{max}-X_{min}$

2. $h=R/k$; k-число групп

3.$ k\geq 1+3.321lgn$ (формула Стерджеса)

4. $a=x_{min}, b=x_{max}$

5.$ h=a+h_i, i=0,1...k$

Определённую в ходе решения задачи группировку удобнее всего скомпоновать и перевести в вид специальной таблицы, которая также может именоваться — «статистический интервальный ряд распределения»:

Интервалы группировки [h0;h1) [h1;h2) ... [hk-2;hk-1) [hk-1;hk)
Частоты n1 n2 ... nk-1 nk

Таблицу подобного вида можно сделать, поменяв частоты $n_i$ на относительные частоты:

Интервалы группировки [h0;h1) [h1;h2) ... [hk-2;hk-1) [hk-1;hk)
Отн. частоты w1 w2 ... wk-1 wk

Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 452 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример 2

На склад пришла крупная партия деталей. Из них методом случайного отбора взято 50 экземпляров. Рассматривая изделия по одному, особенно интересующему признаку — размеру, определённому с точностью до 1 см, получим следующий вариационный ряд: 22, 47, 26, 26, 30, 28, 28, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 40, 40, 40, 40, 40, 41, 41, 43, 44, 44, 45, 45, 47, 50. Требуется произвести расчёт и определить статистический интервальный ряд распределения.

Решение

Найдём параметры выборки используя сведения из условия задачи.

$k \geq1+3,321\cdot lg50=1+3.32lg(5\cdot10)=1+3.32(lg5+lg10)=6.6$

Получили a=22, k=7, h=(50-22)/7=4, hi=22+4i, i=0,1,…,7.

Интервалы группировки 22-26 26-30 30-34 34-38 38-42 42-46 46-50
Частоты 1 4 10 18 9 5 3
Отн. частоты 0.02 0.08 0.2 0.36 0.18 0.1 0.06

Десятичные логарифмы от 1 до 10

n 1 2 3 4 5 6 7 8 9 10
lnn≈ 0 0.3 0.48 0.6 0.7 0.78 0.85 0.9 0.95 1