Задание. Найти предел $\lim _{x \rightarrow \infty}\left(\frac{2+x}{5+x}\right)^{2 x}$
Решение. Подставим $x=\infty$, получим неопределенность и для решения предела воспользуемся вторым замечательным пределом.
$\lim _{x \rightarrow \infty}\left(\frac{2+x}{5+x}\right)^{2 x}\left[1^{\infty}\right]=\lim _{x \rightarrow \infty}\left(1+\frac{2+x}{5+x}-1\right)^{2 x}=$
$=\lim _{x \rightarrow \infty}\left(1+\frac{2+x-5-x}{5+x}\right)^{2 x}=\lim _{x \rightarrow \infty}\left(1+\frac{-3}{5+x}\right)^{2 x}=$
$$=\lim _{x \rightarrow \infty}\left[\left(1+\frac{-3}{5+x}\right)^{\frac{5+x}{-3}}\right]^{2 x \cdot \frac{-3}{5+x}}=\lim _{x \rightarrow \infty} e^{\frac{-6 x}{5+x}}=$$$=e^{\lim _{x \rightarrow \infty} \frac{-6 x}{5+x}\left[\frac{\infty}{\infty}\right]}=e^{\lim _{x \rightarrow \infty} \frac{-6}{5 / x+1}}=e^{\frac{-6}{0+1}}=e^{-6}=\frac{1}{e^{6}}$
Ответ. $\lim _{x \rightarrow \infty}\left(\frac{2+x}{5+x}\right)^{2 x}=\frac{1}{e^{6}}$