Содержание:

Для решения задач с векторами необходимо определить вектор на плоскости или в пространстве, то есть дать информацию о его направлении и длине.

Координаты вектора

Пусть задана прямоугольная декартова система координат (ПДСК) $x O y$ и произвольный вектор $\overline{a}$, начало которого совпадает с началом системы координат (рис. 1).

Координаты вектора a, в декартовой системе координат

Определение

Координатами вектора $\overline{a}$ называются проекции $a_{x}$ и $a_{y}$ данного вектора на оси $O x$ и $O y$ соответственно:

$$a_{x}=Пр_{O x} \bar{a}, a_{y}=Пр_{O y} \bar{a}$$

Величина $a_{x}$ называется абсциссой вектора $\overline{a}$, а число $a_{y}$ - его ординатой. То, что вектор $\overline{a}$ имеет координаты $a_{x}$ и $a_{y}$, записывается следующим образом: $\overline{a}=\left(a_{x} ; a_{y}\right)$.

Пример

Запись $\overline{a}=(5 ;-2)$ означает, что вектор $\overline{a}$ имеет следующие координаты: абсцисса равна 5, ордината равна -2.

Сумма двух векторов, заданных координатами

Пусть заданы $\overline{a}=\left(a_{x} ; a_{y}\right)$ и $\overline{b}=\left(b_{x} ; b_{y}\right)$, тогда вектор $\overline{c}=\overline{a}+\overline{b}$ имеет координаты $\left(a_{x}+b_{x} ; a_{y}+b_{y}\right)$ (рис. 2).

Сумма двух векторов, заданных своими координатами

Определение

Чтобы найти сумму двух векторов, заданных своими координатами, надо сложить их соответствующие координаты.


Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 447 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Заданы $\overline{a}=(-3 ; 5)$ и $\overline{b}=(0 ;-1)$. Найти координаты вектора $\overline{c}=\overline{a}+\overline{b}$

Решение. $\overline{c}=\overline{a}+\overline{b}=(-3 ; 5)+(0 ;-1)=(-3+0 ; 5+(-1))=(-3 ; 4)$


Умножение вектора на число

Если задан $\overline{a}=\left(a_{x} ; a_{y}\right)$, то тогда вектор $m \overline{a}$ имеет координаты $m \overline{a}=\left(m a_{x} ; m a_{y}\right)$, здесь $m$ - некоторое число (рис. 3).

Умножение вектора на число, в координатах

Определение

Чтобы умножить вектор на число, надо каждую координату этого вектора умножить на заданное число.

Пример

Задание. Вектор $\overline{a}=(3 ;-2)$. Найти координаты вектора 2$\overline{a}$

Решение. $2 \overline{a}=2 \cdot(3 ;-2)=(2 \cdot 3 ; 2 \cdot(-2))=(6 ;-4)$

Рассмотрим далее случай, когда начало вектора не совпадает с началом системы координат. Предположим, что в ПДСК заданы две точки $A\left(a_{x} ; a_{y}\right)$ и $B\left(b_{x} ; b_{y}\right)$. Тогда координаты вектора $\overline{A B}=\left(x_{1} ; y_{1}\right)$ находятся по формулам (рис. 4):

$x_{1}=b_{x}-a_{x}, y_{1}=b_{y}-a_{y}$

Определение

Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат конца отнять соответствующие координаты начала.

Координаты вектора, заданного координатами начала и конца

Пример

Задание. Найти координаты вектора $\overline{A B}$, если $A(-4 ; 2), B(1 ;-3)$

Решение. $\overline{A B}=(1-(-4) ;-3-2)=(5 ;-5)$

Направляющие косинусы

Определение

Направляющими косинусами вектора называются косинусы углов, образованных вектором с положительными направлениями осей координат.

Направление вектора однозначно задается направляющими косинусами. Для единичного вектора направляющие косинусы равны его координатам.

Если в пространстве задан вектор $\overline{a}=\left(a_{x} ; a_{y} ; a_{z}\right)$, то его направляющие косинусы вычисляются по формулам:

$\cos \alpha=\frac{a_{x}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}, \cos \beta=\frac{a_{y}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}, \cos \gamma=\frac{a_{z}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}$

Здесь $\alpha$, $\beta$ и $\gamma$ - углы, которые составляет вектор с положительными направлениями осей $O x$, $O y$ и $O z$ соответственно.

Основное свойство направляющих косинусов

Определение

Сумма квадратов направляющих косинусов равна единице.

1

$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$

Если известны направляющие косинусы вектора $\overline{a}=\left(a_{x} ; a_{y}\right)$, то его координаты могут быть найдены по формулам:

$a_{x}=|\overline{a}| \cos \alpha, a_{y}=|\overline{a}| \cos \beta$

Аналогичные формулы имеют место и в трехмерном случае - если известны направляющие косинусы вектора $\overline{a}=\left(a_{x} ; a_{y} ; a_{z}\right)$, то его координаты могут быть найдены по формулам:

$a_{x}=|\overline{a}| \cos \alpha, a_{y}=|\overline{a}| \cos \beta, a_{z}=|\overline{a}| \cos \gamma$


Читать дальше: длина (модуль) вектора.