Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.
Содержание:
Определение параллелограмма
Определение
На рисунке 1 изображен параллелограмм $A B C D, A B\|C D, B C\| A D$.
Свойства параллелограмма
- В параллелограмме противоположные стороны равны: $A B=C D, B C=A D$ (рис 1).
- В параллелограмме противоположные углы равны $\angle A=\angle C, \angle B=\angle D$ (рис 1).
- Диагонали параллелограмма в точке пересечения делятся пополам $A O=O C, B O=O D$ (рис 1).
- Диагональ параллелограмма делит его на два равных треугольника.
-
Сумма углов параллелограмма, прилежащих к одной стороне равна $180^{\circ}$:
$$\angle A+\angle B=180^{\circ}, \angle B+\angle C=180^{\circ}$$
$$\angle C+\angle D=180^{\circ}, \angle D+\angle A=180^{\circ}$$
-
Диагонали и стороны параллелограмма связаны следующим соотношением:
$$d_{1}^{2}+d_{2}^{2}=2 a^{2}+2 b^{2}$$
- В параллелограмме угол между высотами равен его острому углу: $\angle K B H=\angle A$.
- Биссектрисы углов, прилежащих к одной стороне параллелограмма, взаимно перпендикулярны.
- Биссектрисы двух противоположных углов параллелограмма параллельны.
Признаки параллелограмма
Четырехугольник $ABCD$ будет параллелограммом, если
- $A B=C D$ и $A B \| C D$
- $A B=C D$ и $B C=A D$
- $A O=O C$ и $B O=O D$
- $\angle A=\angle C$ и $\angle B=\angle D$
Площадь параллелограмма можно вычислить по одной из следующих формул:
$S=a \cdot h_{a}, \quad S=b \cdot h_{b}$
$S=a \cdot b \cdot \sin \alpha, \quad S=\frac{1}{2} d_{1} \cdot d_{2} \cdot \sin \phi$
Примеры решения задач
Пример
Задание. Сумма двух углов параллелограмма равна $140^{\circ}$. Найти больший угол параллелограмма.
Решение. В параллелограмме противоположные углы равны. Обозначим больший угол параллелограмма $\alpha$, а меньший угол $\beta$. Сумма углов $\alpha$ и $\beta$ равна $180^{\circ}$, поэтому заданная сумма, равная $140^{\circ}$, это сумма двух противоположных углов, тогда $140^{\circ} : 2=70^{\circ}$. Таким образом меньший угол $\beta=70^{\circ}$. Больший угол $\alpha$ найдем из соотношения:
$\alpha+\beta=180^{\circ} \Rightarrow \alpha=180^{\circ}-\beta \Rightarrow$
$\Rightarrow \alpha=180^{\circ}-70^{\circ} \Rightarrow \alpha=110^{\circ}$
Ответ. $\alpha=110^{\circ}$
Пример
Задание. Стороны параллелограмма равны 18 см и 15 см, а высота, проведенная к меньшей стороне, равна 6 см. Найти другую высоту параллелограмма.
Решение. Сделаем рисунок (рис. 2)
По условию, $a=15$ см, $b=18$ см, $h_{a}=6$ см. Для параллелограмма справедливы следующие формулы для нахождения площади:
$$S=a \cdot h_{a}, \quad S=b \cdot h_{b}$$
Приравняем правые части этих равенств, и выразим, из полученного равенства, $h_{b} $:
$$a \cdot h_{a}=b \cdot h_{b} \Rightarrow h_{b}=\frac{a \cdot h_{a}}{b}$$
Подставляя исходные данные задачи, окончательно получим:
$h_{b}=\frac{15 \cdot 6}{18} \Rightarrow h_{b}=5$ (см)
Ответ. $h_{b}=5$
Читать дальше: что такое трапеция.