Задание. |
Найти производную -го порядка функции |
Решение. |
Будем последовательно находить производные первого, второго, третьего и так далее порядков заданной функции для того, чтобы установить закономерность, которую можно будет обобщить на -ую производную. Производную первого порядка находим как производную частного: Здесь выражение называется факториалом числа (читается "эн факториал"). Факториал числа равен произведению чисел от одного до , то есть Производная второго порядка есть первая производная от первой производной, то есть Производная третьего порядка: Четвертая производная: Заметим закономерность: в числителе стоит факториал числа, которое равно порядку производной, а в знаменателе выражение в степени на единицу больше, чем порядок производной, то есть |
Ответ. |
Примеры решения задач - Производные
Интеграл функции является основным понятием интегрального исчисления. Интеграл широко используется при решении целого ряда задач по математике, физике и в других науках. Именно поэтому мы собрали на сайте более 100 примеров решения интегралов и постоянно добавляем новые! Список тем находится в правом меню.
Перед изучением примеров вычисления интегралов советуем вам прочитать теоретический материал по теме: определения, свойства и таблицу интегралов, методы их вычисления и другой материал по интегралам.
Программа не может допустить ошибки, у нее не может быть опечатки и ее почерк Вы всегда поймете. С нами решение задач по математике - это просто. Используйте наш сервис и решение задач по математике, физике, геометрии и теории вероятности не составит для Вас больше труда.
Для того, чтобы получить решение Вам надо только ввести данные и наши программы, самостоятельно, без участия людей, всего за пару секунд выдадут Вам точный, исчерпывающий ответ. Большинство программ вместе с ответом выдают подробное решение, в результате Вам надо только переписать решение в тетрадь и затем получить свою хорошую оценку. К программа прилагаются примеры решения задач, так что еще не введя данные, Вы будете знать, как будет выглядеть ответ. Для тренировки и усвоения материала используйте раздел примеры решения задач.
Все онлайн калькуляторы на сайте абсолютно бесплатны. Пользуйтесь на здоровье!