Задание. Найти сумму чисел:
1) $12$ и $15$ 2) $1,1 ; 2,2 ; 3,3$ и $4,4$
Ответ.
$12+15=27$
$1,1+2,2+3,3+4,4=11$
Содержание:
Суммой $s$ (лат. summa - итог, общее количество) чисел $a_{1}, a_{2}, \dots, a_{n}$ называется результат суммирования этих чисел: $s=a_{1}+a_{2}+\ldots+a_{n}$ . В частности, если складывается два числа $a$ и $b$, то
Пример
Задание. Найти сумму чисел:
1) $12$ и $15$ 2) $1,1 ; 2,2 ; 3,3$ и $4,4$
Ответ.
$12+15=27$
$1,1+2,2+3,3+4,4=11$
Ассоциативность: $(n+m)+k=n+(m+k)$
На основании этих свойств можем заключить, что от перестановки мест слагаемых сумма не изменяется.
Дистрибутивность по отношению к умножению
$$(n+m) \cdot k=n \cdot k+m \cdot k$$
Пример
Задание. Найти сумму чисел удобным способом:
1) $15+17+13$ ; 2) $34+22+16+18$
Решение. По свойствам сложения имеем
$$15+17+13 =15+(17+13)=15+30=45 $$
$$34+22+16+18 =(34+16)+(22+18)=50+40=90 $$
Ответ. 1) $15+17+13=45$
2) $34+22+16+18=90$
При сложении больших чисел или десятичных дробей используется сложение в столбик.
Пример
Задание. Найти сумму чисел удобным способом:
1) $1562+13827$ ; 2) $34,71+356,161$
Решение. Складываем эти числа в столбик, для этого запишем их друг под другом, разряд под разрядом. В случае десятичных дробей ориентируемся на то, чтобы запятая первого числа стояла под запятой второго. Далее складываем числа стоящие друг под другом, двигаясь справа на лево и записывая результата под чертой дроби. Если сумма чисел в одном столбце превышает десять, то количество десятков прибавляем к числам стоящим в следующем столбце слева от этого столбца:
Ответ. 1) $1562+13827=15389$
2) $34,71+356,161=390,871$
Сложение рациональных дробей производится по правилу
$$\frac{m}{n}+\frac{p}{q}=\frac{m \cdot q+n \cdot p}{n \cdot q}$$
Пример
Задание. Найти сумму чисел:
1) $\frac{1}{4}+\frac{1}{6}$ ; 2) $\frac{2}{3}+1 \frac{1}{2}$
Решение. Вычислим первую сумму используя правило сложения рациональных чисел
$$\frac{1}{4}+\frac{1}{6}=\frac{1 \cdot 6+1 \cdot 4}{4 \cdot 6}=\frac{6+4}{24}=\frac{10}{24}$$
Числитель и знаменатель полученной дроби можно сократить на 2, тогда в ответе получим
$$\frac{1}{4}+\frac{1}{6}=\frac{5}{12}$$
Для вычисления второй суммы, преобразуем сначала второе слагаемое в неправильную дробь, для этого умножим целую часть на знаменатель и прибавим полученное число к числителю. Далее применим правило сложение рациональных дробей
$$\frac{2}{3}+1 \frac{1}{2}=\frac{2}{3}+\frac{3}{2}=\frac{2 \cdot 2+3 \cdot 3}{3 \cdot 2}=\frac{4+9}{6}=\frac{13}{6}$$
Выделим в полученной дроби целую часть, для этого разделим числитель на знаменатель с остатком. Полученное частное запишем в целую часть, а остаток от деления в числитель.
$$\frac{2}{3}+1 \frac{1}{2}=2 \frac{1}{6}$$
Ответ. 1) $\frac{1}{4}+\frac{1}{6}=\frac{5}{12}$ ; 2) $\frac{2}{3}+1 \frac{1}{2}=2 \frac{1}{6}$
Читать дальше: что такое произведение чисел.