Сокращением дроби называется замена ее другой, равной ей дробью с меньшими членами, путем деления числителя и знаменателя на их общий делитель.
Определение
Сокращать дроби можно последовательным сокращением на общие делители числителя и знаменателя.
Пример
Задание. Сократить дробь $\frac{48}{88}$
Решение. Как видим, числитель и знаменатель заданной дроби являются четными числами, а поэтому и можно сократить на их общий делитель - 2:
$\frac{48}{88}=\frac{24}{44}$
Аналогично, общим делителем полученных числителя 24 и знаменателя 44 есть число 4, а поэтому производим дальнейшее сокращение на 4:
$\frac{48}{88}=\frac{24}{44}=\frac{6}{11}$
Полученные числа - 6 и 11 - уже являются взаимно простыми.
Итак, после сокращения окончательно имеем:
$\frac{48}{88}=\frac{6}{11}$
Ответ. $\frac{48}{88}=\frac{6}{11}$
Также сокращать можно сразу на наибольший общий делитель (НОД) числителя и знаменателя, который можно находить либо с помощью канонических разложений на простые множители, либо с помощью алгоритма Евклида.
Определение
Наибольшим общим делителем чисел называется наибольшее число, на которое все данные числа делятся без остатка.
Пример
Задание. Сократить дробь $\frac{840}{3600}$
Решение. Вначале найдем НОД чисел 840 и 3600 двумя способами.
Первый способ: с помощью канонических разложений на простые множители. Запишем указанные канонические разложения:
Таким образом, $840=2^{3} \cdot 3 \cdot 5 \cdot 7,3600=2^{4} \cdot 3^{2} \cdot 5^{2}$
Из полученных разложений выписываем одинаковые множители в наименьшей степени, что и определяет НОД:
НОД (840, 3600) $=2^{3} \cdot 3 \cdot 5=120$
Второй способ: с помощью алгоритма Евклида (Евклид или Эвклид (325 г. до н.э. - 265 г. до н.э.) - древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике).
НОД двух чисел равен последнему, неравному нулю остатку в алгоритме Евклида. Будем выполнять деление в столбик. Начнем с того, что знаменатель 3600 поделим на числитель 840 (большее число делится на меньшее):
Итак, НОД (840, 3600) = 120
После того, как НОД найден, делим числитель и знаменатель дроби $\frac{840}{3600}$ на 120, в результате получим:
$\frac{840}{3600}=\frac{7}{30}$
Ответ. $\frac{840}{3600}=\frac{7}{30}$
Определение
Если числитель и знаменатель дроби не имеют общих делителей, то есть являются взаимно простыми числами, то дробь называется несократимой.
Например. $\frac{4}{11}$
Читать следующую тему: раздробление дробей.