Вероятность произведения двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную при условии, что первое имело место.
Содержание:
Формулировка теоремы умножения вероятностей
Теорема
$P(A B)=P(A) \cdot P(B | A)$
Событие $A$ называется \lt strong>независимым от события \lt /strong>$B$, если вероятность события $A$ не зависит от того, произошло событие $B$ или нет. Событие $A$ называется зависимым от события $B$, если вероятность события $A$ меняется в зависимости от того, произошло событие $B$ или нет.
Вероятность события $A$, вычисленная при условии, что имело место другое событие $B$, называется \lt strong>условной вероятностью события \lt /strong> $A$ и обозначается $P(A | B)$ .
Условие независимости события $A$ от события $B$ можно записать в виде:
$$P(A | B)=P(A)$$
а условие зависимости - в виде:
$$P(A | B) \neq P(A)$$
Следствие 1. Если событие $A$ не зависит от события $B$, то и событие $B$ не зависит от события $A$ .
Следствие 2. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий:
$$P(A B)=P(A) \cdot P(B)$$
Теорема умножения вероятностей может быть обобщена на случай произвольного числа событий. В общем виде она формулируется так.
Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:
$$P\left(A_{1} A_{2} \ldots A_{n}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} | A_{1}\right) \cdot P\left(A_{3} | A_{1} A_{2}\right) \cdots \cdots P\left(A_{n} | A_{1} A_{2} \ldots A_{n-1}\right)$$
В случае независимых событий теорема упрощается и принимает вид:
$$P\left(A_{1} A_{2} \ldots A_{n}\right)=P\left(A_{1}\right) \cdot P\left(A_{2}\right) \cdot P\left(A_{3}\right) \cdot \ldots \cdot P\left(A_{n}\right)$$
то есть вероятность произведения независимых событий равна произведению вероятностей этих событий:
$$P\left(\prod_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)$$
Примеры решения задач
Пример
Задание. В урне 2 белых и 3 черных шара. Из урны вынимают подряд два шара и назад не возвращаются. Найти вероятность того, что оба шара белые.
Решение. Пусть событие $A$ - появление двух белых шаров. Это событие представляет собой произведение двух событий:
$$A=A_{1} A_{2}$$
где событие $A_1$ - появление белого шара при первом вынимании, $A_2$ - появление белого шара при втором вынимании. Тогда по теореме умножения вероятностей
$$P(A)=P\left(A_{1} A_{2}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} | A_{1}\right)=\frac{2}{5} \cdot \frac{1}{4}=\frac{1}{10}=0,1$$
Ответ. $0,1$
Пример
Задание. В урне 2 белых и 3 черных шара. Из урны вынимают подряд два шара. После первого вынимания шар возвращается в урну, и шары в урне перемешиваются. Найти вероятность того, что оба шара белые.
Решение. В данном случае события $A_1$ и $A_2$ независимы, а тогда искомая вероятность
$$P(A)=P\left(A_{1} A_{2}\right)=P\left(A_{1}\right) \cdot P\left(A_{2}\right)=\frac{2}{5} \cdot \frac{2}{5}=\frac{4}{25}=0,16$$
Ответ. $0,16$