Автор Тема: Вычислить определенный интеграл  (Прочитано 2176 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн bocha86

  • Постоялец
  • ***
  • Сообщений: 180
  • Люблю матиматику, но ее еще надо вспомнить....
    • Просмотр профиля
\( \int_{0}^{2}\frac{{x}^{3}dx}{{x}^{2}+4} \)
Анастасия

Оффлайн ELEK1984

  • Постоялец
  • ***
  • Сообщений: 247
    • Просмотр профиля
Re: Вычислить определенный интеграл
« Ответ #1 : 26 Марта 2011, 23:25:52 »
\( \int \frac{{x}^{3}dx}{{x}^{2}+4}= \)   поделите столбиком, в итоге получите  \( =\int \left(x-\frac{4x}{x^2+4} \right)dx=[d(4+x^2)=2xdx]=\frac{x^2}{2}-2\int \frac{2 d(x^2+4)}{x^2+4}=\frac{x^2}{2}-2 \ln (x^2+4)+c \)
Осталось только посчитать значение определенного интеграла=)
Математику нельзя изучать, наблюдая, как это делает кто-то другой!

Оффлайн renuar911

  • Ветеран
  • *****
  • Сообщений: 2489
  • От форм математических бушует вся душа
    • Просмотр профиля
Re: Вычислить определенный интеграл
« Ответ #2 : 26 Марта 2011, 23:38:25 »
Решаю сначала неопределенный интеграл:

\(  = \int x-2 \frac{2x}{x^2+4}dx = \int x dx - 2 \int \frac{2x}{x^2+4}dx = \frac{x^2}{2}-2ln(x^2+4)+C \)

Осталось только подставить пределы интегрирования.
Телепатия, понимаешь  :D
« Последнее редактирование: 26 Марта 2011, 23:42:36 от renuar911 »
За жизнью надо тщательно следить, все время избегая с ней разлуки.

Оффлайн ELEK1984

  • Постоялец
  • ***
  • Сообщений: 247
    • Просмотр профиля
Re: Вычислить определенный интеграл
« Ответ #3 : 26 Марта 2011, 23:43:18 »
Чем отличается процесс вычисления неопределенного интеграла от определенного ?
Тем что вы находите одну из первообразных, а затем используя правило Ньютона - Лейбница находите значение определенного интеграла.
\( \int_a^b f(x) dx = F(x) \Bigr|_a^b=F(b)-F(a) \)
Математику нельзя изучать, наблюдая, как это делает кто-то другой!

Оффлайн bocha86

  • Постоялец
  • ***
  • Сообщений: 180
  • Люблю матиматику, но ее еще надо вспомнить....
    • Просмотр профиля
Re: Вычислить определенный интеграл
« Ответ #4 : 26 Марта 2011, 23:44:46 »
Чем отличается процесс вычисления неопределенного интеграла от определенного ?
Тем что вы находите одну из первообразных, а затем используя правило Ньютона - Лейбница находите значение определенного интеграла.
\( \int_a^b f(x) dx = F(x) \Bigr|_a^b=F(b)-F(a) \)
Мне интересно как ВЫ столбиком разделили)))
Анастасия


Оффлайн ELEK1984

  • Постоялец
  • ***
  • Сообщений: 247
    • Просмотр профиля
Re: Вычислить определенный интеграл
« Ответ #6 : 26 Марта 2011, 23:46:52 »
\( \int_0^2 \frac{{x}^{3}dx}{{x}^{2}+4}=\int_0^2 \left(x-\frac{4x}{x^2+4} \right)dx=[d(4+x^2)=2xdx]=...=\left(\frac{x^2}{2}-2 \ln (x^2+4) \right)\Bigr|_0^2= \), ну а теперь вместо х подставляйте о и 2!


Математику нельзя изучать, наблюдая, как это делает кто-то другой!

Оффлайн renuar911

  • Ветеран
  • *****
  • Сообщений: 2489
  • От форм математических бушует вся душа
    • Просмотр профиля
Re: Вычислить определенный интеграл
« Ответ #7 : 27 Марта 2011, 00:02:42 »
Деление производят обычным уголком так:

За жизнью надо тщательно следить, все время избегая с ней разлуки.

Оффлайн bocha86

  • Постоялец
  • ***
  • Сообщений: 180
  • Люблю матиматику, но ее еще надо вспомнить....
    • Просмотр профиля
Re: Вычислить определенный интеграл
« Ответ #8 : 27 Марта 2011, 00:12:44 »
 :)
Анастасия

Оффлайн Dimka1

  • Ветеран
  • *****
  • Сообщений: 4913
    • Просмотр профиля
Re: Вычислить определенный интеграл
« Ответ #9 : 27 Марта 2011, 00:38:40 »
x^3/(x^2+4)=[(x^3+4x)-4x]/(x^2+4)=[x(x^2+4)-4x]/(x^2+4)==x-[4x/(x^2+4)]
Решение задач - практическое искусство; научиться ему можно, только подражая хорошим образцам и постоянно практикуясь....

Оффлайн bocha86

  • Постоялец
  • ***
  • Сообщений: 180
  • Люблю матиматику, но ее еще надо вспомнить....
    • Просмотр профиля
Re: Вычислить определенный интеграл
« Ответ #10 : 27 Марта 2011, 00:44:13 »
Всем спасибо!
Анастасия