Автор Тема: Нахождение кубического корня из комплексного числа  (Прочитано 6051 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн chemist

  • Новичок
  • *
  • Сообщений: 2
    • Просмотр профиля
Можно ли (и если да, то по каким формулам) найти кубический корень (т.е. три его значения) из комплексного числа a + bi, не переводя его в тригонометрическую или показательную формы?

Оффлайн InfStudent

  • Ветеран
  • *****
  • Сообщений: 1356
  • Куба любовь моя))
    • Просмотр профиля
Наверно можно, но складывается впечатление что в тригономитречиской проще 
Прежде чем задавать вопрос в раздел по программированию повтори теорию и посмотри FAQ! Просьба не кидайте задания в ЛС и не надо мне писать: "посмотри мою задачу!!!" Я смотрю все задачи в разделе когда на форуме
Учтите что подобные ЛС будут оставлены без внимания!
УКАЗЫВАЙТЕ ЯЗЫК ПРОГРАММИРОВАНИЯ НА КОТОРОМ ДОЛЖНА БЫТЬ РЕШЕНА ЗАДАЧА
Вам в помощь:
∫ ¼ ½ ¾ ⅓ ⅔ ⅛ ⅜ ⅝ ⅞ ² ³ ± ~ ‰ ∞ √ ∑ ∆ ℮ ∩ ≡ ≤ ≥ ≈ ∩

Оффлайн Nikgamer

  • Ветеран
  • *****
  • Сообщений: 610
    • Просмотр профиля
Можно. Возьмите c+di=(a+bi)1/3, возводите в куб, приравнивайте мнимые и действительные части.
депрессивный зануда и социофоб.

Оффлайн chemist

  • Новичок
  • *
  • Сообщений: 2
    • Просмотр профиля
Можно. Возьмите c+di=(a+bi)1/3, возводите в куб, приравнивайте мнимые и действительные части.


a = c^3 - 3cd^2
b = 3dc^2 - d^3

И что же дальше? По-моему, тут всё сведётся к кубическому уравнению, для решения которого по формуле Кардано потребуется извлекать кубический корень из, вообще говоря, комплексного числа. Замкнутый круг?

Оффлайн Nikgamer

  • Ветеран
  • *****
  • Сообщений: 610
    • Просмотр профиля
И правда. Ну ваша взяла, значит никак, наверное.
депрессивный зануда и социофоб.

 

Нахождение для жорд. матрицы в комл. числах подобной матрицы в веществ. числах

Автор Feo

Ответов: 0
Просмотров: 3839
Последний ответ 31 Мая 2009, 09:58:46
от Feo
собственные числа собственные векторы матрицы

Автор defaw

Ответов: 3
Просмотров: 3033
Последний ответ 22 Декабря 2012, 22:58:08
от tig81
определить собственные числа и собственные векторы

Автор granatka

Ответов: 22
Просмотров: 5787
Последний ответ 10 Февраля 2013, 15:50:22
от tig81
Найти собственные числа и собственные вектора у матрицы

Автор Alya7

Ответов: 16
Просмотров: 15471
Последний ответ 22 Ноября 2010, 23:02:34
от Alya7
Нахождение собственных значений и собственных векторов матрицы

Автор Жвачка

Ответов: 8
Просмотров: 7339
Последний ответ 29 Марта 2011, 17:01:58
от tig81